Optimization of plasmonic heating by gold nanospheres and nanoshells.

نویسندگان

  • Nadine Harris
  • Michael J Ford
  • Michael B Cortie
چکیده

Gold nanoparticles have strong and tunable absorption peaks in their optical extinction spectra, a phenomenon that has recently been exploited to generate localized heating in the vicinity of these particles. However the optimum particle geometry and illumination regime to maximize these effects appears not to have been previously examined in any detail. Here we show that the interplay between the particles' absorption cross-sections, volume, and surface area lead to there being specific conditions that can maximize particle temperature and surface heat flux. Optical absorption efficiencies were calculated from the formulation of Mie, and radiative, convective, and conductive heat transfer models were used to model the thermal performance of particles in different situations. Two technologically relevant scenarios for illumination, namely, irradiation by sunlight at 800 W/m2 and by a monochromatic laser source of 50 kW/m2 tuned to the peak absorption wavelength, were considered. For irradiation by sunlight, the resultant heat flux is optimized for an 80 nm diameter nanoshell with an aspect ratio of 0.8, while for irradiation by laser the maximum heat flux is found for 50 nm nanoshells, with an aspect ratio of 0.9.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gold nanostructures: engineering their plasmonic properties for biomedical applications.

The surface plasmon resonance peaks of gold nanostructures can be tuned from the visible to the near infrared region by controlling the shape and structure (solid vs. hollow). In this tutorial review we highlight this concept by comparing four typical examples: nanospheres, nanorods, nanoshells, and nanocages. A combination of this optical tunability with the inertness of gold makes gold nanost...

متن کامل

Laser induced SERS switching using plasmonic heating of PNIPAM coated HGNs.

This is the first report of SERS switching 'on and off' using laser induced plasmonic heating of poly(N-isopropylacrylamide) (PNIPAM) coated hollow gold nanoshells (HGNs). The degree of Raman enhancement for these thermosensitive SERS nanotags was controlled by plasmonic tuning of the properties of the HGNs.

متن کامل

Modified Photochemical Properties of Mitoxantrone by Plasmonic Photothermal Response of Hollow Gold Nanoshells

Introduction: Mitoxantrone (MX) has been introduced as a photosensitizer drug. However, due to some side effects, the widespread use of this drug has been confronted with some limitations. Hollow gold nanoshells (HGN) have attracted considerable attention due to their interesting photochemical features that can use as nanocarrier. In this paper, the thermal response of MX and the use of this pr...

متن کامل

Quantitative Comparison of Photothermal Heat Generation between Gold Nanospheres and Nanorods

Gold nanoparticles (GNPs) are widely used for biomedical applications due to unique optical properties, established synthesis methods, and biological compatibility. Despite important applications of plasmonic heating in thermal therapy, imaging, and diagnostics, the lack of quantification in heat generation leads to difficulties in comparing the heating capability for new plasmonic nanostructur...

متن کامل

Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas.

Plasmonic nanomaterials have the opportunity to considerably improve the specificity of cancer ablation by i.v. homing to tumors and acting as antennas for accepting externally applied energy. Here, we describe an integrated approach to improved plasmonic therapy composed of multimodal nanomaterial optimization and computational irradiation protocol development. We synthesized polyethylene glyc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 22  شماره 

صفحات  -

تاریخ انتشار 2006